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Modulational instability of electromagnetic waves in birefringent fibers
with periodic and random dispersion
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Modulational instability~MI ! of electromagnetic waves in a birefringent fiber with a periodic dispersion
~two-step dispersion management scheme! is investigated. The properties of new sidebands are studied. The
strong variation of dispersion leads to the decreasing of the main MI region and the suppression of additional
resonance. In the random dispersion case the MI of all frequencies of modulation in the normal dispersion
region is predicted. In the anomalous dispersion case the decreasing of the main MI peak is calculated and
changes in the spectral bandwidth of MI gain are found. The analytical predictions are confirmed by the
numerical simulations of the full coupled nonlinear Schro¨dinger equations with periodic coefficients.
@S1063-651X~99!10907-3#

PACS number~s!: 42.81.Gs, 42.65.2k, 42.50.Ar
e

h
y

m

h
-

th
a
m
o
e

ca
n
o

di-

tic
e
rr

pe
A
n
in
ds

p

cies.
r-
er-

b-
a

tly
tion
ed

re-
me
this
d
e-

he
mly
ua-
inal

ica-

l is
th
Sec.
d
r is

sion

ro-
bi-
ofs:
I. INTRODUCTION

The modulational instability~MI ! of nonlinear plane
waves is one of the fundamental phenomena in the nonlin
waves physics. The history is about thirty years@1–5#. This
phenomenon finds many applications in plasma physics,
drodynamics, nonlinear optics, and other branches of ph
ics. In particular, in nonlinear optics this phenomena is i
portant for the optical communications systems~degradation
of performance!, the generation of short pulses with hig
repetition rates@5#, and the design of all-optical logical de
vices @6#.

The modulational instability phenomenon consists in
instability of nonlinear plane waves solutions against we
long scale modulations with frequencies lower than so
critical value. The next stage of evolution is the growth
sidebands and the periodic exchange of energy betw
pump and sidebands due to the wave propagation. The s
and vector nonlinear Schro¨dinger~NLS! equations have bee
studied in Refs.@7–10#. A lot of work has been devoted t
the MI process in homogeneous nonlinear media.

Recently the investigation of the MI process in perio
cally modulated media has attracted attention@11–13#. This
investigation is mainly motivated by the electromagne
waves propagation in fibers with periodically varying pow
and dispersion along the propagation distance. The co
sponding mathematical model is the NLS equation with
riodically varying dispersion and nonlinear coefficients.
new phenomenon has been predicted: the generation of
sidebands and the existence of unstable sidebands even
normal dispersion regime. The existence of such sideban
connected with the parametric resonance between fiber

*FAX: ~33! 1 69 33 30 11. Electronic addres
garnier@cmapx.polytechnique.fr
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The periodic modulations of dispersion is of particular inte
est. As analysis shows, the periodic modulations of disp
sion leads to decreasing of MI gain@14,15#. This result mo-
tivates the study of the dispersion-managed solitons@16,17#.

It is interesting to investigate the extension of this pro
lem to the vector NLS case. Physical motivations are MI in
birefringent fiber with periodic dispersion and gain. Recen
the interest to this problem has increased due to polariza
division multiplexing schemes in the dispersion-manag
solitons applications. The numerical simulations of a bi
fringent fiber with the two-step dispersion managed sche
shows the existence of dispersion-managed solitons in
case@18#. MI with periodically modulated birefringence an
periodically varying group velocity delay was analyzed r
cently by @19#.

In this paper we shall also study the MI process in t
case when the dispersion of the birefringent fiber is rando
modulated. In real fibers there always exist random fluct
tions of parameters. The measurements of the longitud
variations show that the zero wavelengthl0 is fluctuating
and this leads to the degradation of the optical commun
tions system performance@20,21#.

The paper is organized as follows. In Sec. II the mode
described. The analysis of MI in the birefringent fiber wi
two-step dispersion managed scheme is performed in
III. In Sec. IV the MI in the case of randomly modulate
dispersion is studied and the MI gain and spectral behavio
calculated for the mean normal and anomalous disper
cases.

II. DESCRIPTION OF THE MODEL

We shall study the propagation of two polarized elect
magnetic waves in a periodic transmission line with an ar
trary dispersionb(x). The governing system is the system
two coupled modified nonlinear Schro¨dinger equations@18#
1042 ©1999 The American Physical Society
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PRE 60 1043MODULATIONAL INSTABILITY OF ELECTROMAGNETI C . . .
iux1b~x!utt1g~ uuu21auvu2!u50, ~1!

ivx1b~x!v tt1g~auuu21uvu2!v50, ~2!

where x and t are conventionally normalized distance a
time in the moving reference frame anda51 for orthogo-
nally polarized waves. In the birefringent fiber casea'2/3.
The dispersion coefficientb(x) is a periodicallyx-varying
function. The system has the nonlinear plane waves solut

u05A exp@ ig~A21aB2!x#, ~3!

v05B exp@ ig~B21aA2!x#. ~4!

Let us consider the modulational instability of those so
tions. We perform a linear stability analysis, representing
solutions in the form

u5~A1u1!eig(A21aB2)x, ~5!

v5~B1v1!eig(B21aA2)x. ~6!

Then the equations for the correctionsu1 ,v1 are

iu1x1b~x!u1tt1gA2~u11u1* !1gaAB~v11v1* !50,
~7!

iv1x1b~x!v1tt1gB2~v11v1* !1gaAB~u11u1* !50.
~8!

It is useful to perform the Fourier transform. We then g

iu1x~V!2b~x!V2u1~V!1gA2@u1~V!1u1* ~2V!#

1gaAB@v1~V!1v1* ~2V!#50, ~9!

iv1x~V!2b~x!V2v1~V!1gB2@v1~V!1v1* ~2V!#

1gaAB@u1~V!1u1* ~2V!#50. ~10!

Note that the system~7!,~8! only contains second-order de
rivatives with respect tot, so thatu1(t)5u1(2t) andv1(t)
5v1(2t), which also imposesu1(V)5u1(2V) and
v1(V)5v1(2V). We can then separate the system~9!,~10!
into the real and imaginary parts usingu15a1 ib,v15c
1 id. We get the system

ax5b~x!V2b, ~11!

bx52b~x!V2a12gA~Aa1aBc!, ~12!

cx5b~x!V2d, ~13!

dx52b~x!V2c12gB~Bc1aAa!. ~14!

Throughout the paper we shall consider the particular c
A5B which simplifies the algebra. Finally we shall defin
the MI gain as the coefficientG(V) which governs the maxi-
mal exponential growth ofa(V)2, b(V)2, c(V)2, and
d(V)2.
ns

-
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III. ANALYSIS FOR TWO-STEP DISPERSION MANAGED
SCHEME

A. Expression of the MI gain

Let us consider now the particular configuration whereb
is stepwise constant and takes two different valuesb1 andb2
at regularly spaced intervals with lengthsL1 andL2, respec-
tively. The system is consequently periodic with periodL
ªL11L2. More precisely

b~x!5b1 if xP@nL,nL1L1!, for n50,1,...,

5b2 if xP@nL1L1 ,~n11!L !, for n50,1,... .

Equations~11!–~14! can be solved analytically over interva
whereb is constant. Setting

f 6
ªa6c,

g6
ªb6d,

the functions (f 1,g1) and (f 2,g2) satisfy closed-form and
independent equations. Over intervals of typej ~where b
5b j ), j 51 or 2, (f 1,g1) and (f 2,g2) satisfy

f xx
6 1b jV

2~b jV
22 l 621! f 650,

g65 f x
6/~b jV

2!,

wherel 1 and l 2 are the characteristic wavelengths

l 6
ª

1

2gA2~16a!
. ~15!

Applying continuity conditions of the field and of its tim
derivative at the boundaries, it is then obvious to comp
the general solutions of these linear differential equatio
with constant coefficients

S f 6

g6D ~nL1L1!5M1
6~L1!S f 6

g6D ~nL!,

S f 6

g6D @~n11!L#5M2
6~L2!S f 6

g6D ~nL1L1!,

where the matricesM j
6 are given by

M j
6~x!5S cos~kj

6x!
b jV

2

kj
6

sin~kj
6x!

2
kj

6

b jV
2
sin~kj

6x! cos~kj
6x!

D , ~16!

with

kj
6~V!ªAb jV

2~b jV
22 l 621!. ~17!

Note that if the expression inside the squared root is nega
valued, thenkj

6 is imaginary, and the cos and sin whic
appear in Eq.~16! should then be interpreted as cosh a
i sinh. Denoting
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1044 PRE 60F. KH. ABDULLAEV AND J. GARNIER
M 6
ªM2

6~L2!M1
6~L1!

we get the recursive relation

S f 6

g6D @~n11!L#5M 6S f 6

g6D ~nL!,

from which we deduce that

S f 6

g6D ~nL!5M 6nS f 6

g6D ~0!.

More generally, ifxP@nL,nL1L1), then

S f 6

g6D ~x!5M1
6~x2nL!M 6nS f 6

g6D ~0!

and if xP@nL1L1 ,(n11)L), then

S f 6

g6D ~x!5M2
6~x2nL2L1!M1

6~L1!M 6nS f 6

g6D ~0!.

We shall observe an exponential growth ofa, b, c, or d ~or
equivalently f 1, g1, f 2, or g2) if and only if one of the
eigenvalues ofM 1 andM 2 has a modulus larger than 1. Le
us denote the two eigenvalues ofM 1 (M 2) by l1

1 and
l2

1 (l1
2 andl2

2). Since detM 651, we have

l1
6l2

651, ~18!

so that there is stability only whenul1
1u5ul2

1u5ul1
2u

5ul2
2u51. Otherwise, there is MI gain and the exponent

gain per unit length is given by

G5
2

L
max~ lnul1

1u, lnul2
1u, lnul1

2u, lnul2
2u!.

From Eq.~18!, this expression can be simplified into

G5
2

L
max~ zlnul1

1uz,zlnul1
2uz!.

Let us now study more carefully the spectra of the matri
M 6. One finds that the eigenvalues have the followi
forms:

l1
65a61Aa6221,

l2
65a62Aa6221,

where

a6
ªcos~k2

6L2!cos~k1
6L1!2

1

2
~r 61r 621!

3sin~k2
6L2!sin~k1

6L1!, ~19!

r 6
ª

k1
6b2

k2
6b1

. ~20!
l

s

Note thata6 is always real valued even whenk1
6 and/ork2

6

is complex valued. This can be checked by simple alge
using the fact thatkj

6 is either real valued or purely imagi
nary.

Two cases are possible.
~i! If a62.1, then the eigenvaluesl1

6 and l2
6 are real

valued and strictly different. Since the productl1
6l2

6 is
equal to 1, at least one of the eigenvalues has a mod
larger than 1.

~ii ! If a62<1, then, denotingb6
ªA12a62, the eigen-

values are given byl1
65a61 ib6 andl2

65a62 ib6. Since
their product is equal to 1, we havea621b6251, which
means that there exists someu6 such thata65cos(u6) and
b65sin(u6). Consequently, l1

65expiu6 and l2
65exp

2iu6 have both modulus 1.
As a conclusion, there is stability if and only ifa2221

anda1221 are nonpositive valued, and otherwise the exp
nential gain is

G5
2

L
max~ u lnuua1u1Aa1221uu,u lnuua2u1Aa2221uu!.

~21!

a6 depends on all parameters of the problem, nam
b1 , b2 , L1 , L2 , a, andA, and also on the frequencyV
through kj

6 defined by Eq.~17!. Equation~21! reads as a
closed-form expression which allows us to plotG(V) as a
function of V given the set of parameter
(b1 ,b2 ,L1 ,L2 ,a,A).

B. Numerical applications

Figure 1 corresponds to the case of birefringent fib
with an average anomalous dispersion, whena52/3. We
have considered the case wheng52 W21km21, L15L2
520 km, P05A255 mW. In such conditions the characte
istic wavelengths arel 1530 km andl 25150 km. It appears

FIG. 1. MI gain per unit length~in km! versus modulation fre-
quency V ~in THz! for g52 W21 km21, L15L2520 km, P0

5A255 mW, anda52/3. The curveA corresponds to the standar
anomalous dispersionb15b251 ps2 km21. CurvesB, C, and D
have all the same average anomalous dispersion (L1b1

1L2b2)/(L11L2)51 ps2 km21, but the dispersion manageme
gets large values;B corresponds tob154 andb2522 ps2 km21,
C corresponds tob158 and b2526 ps2 km21, and D corre-
sponds tob1516 andb25214 ps2 km21.
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that the central peak gain is progressively reduced as
strength of the dispersion management increases, and s
the resonant sidebands. We shall give more detail in the
section.

Figure 2 corresponds to the case of birefringent fib
with an average normal dispersion, whena52/3. Although
there is no MI gain in the uniform caseb[21 @9#, some
new sidebands appear when the dispersion manageme
not zero, but these sidebands tend to disappear for st
dispersion management.

C. Study of the caseL 1 , L 2! l 1, l 2

Let us study the MI gain in the framework whenL1 and
L2 are smaller than the characteristic wavelengthsl 1 andl 2,
which is usually the case in experimental configurations.
then introduce the adimensional parameters such thatL1
5(12s)L andL25sL. In such conditions the average di
persion is

b̄ª~12s!b11sb2 . ~22!

Here are the main results. The primary effect of disp
sion management in the average anomalous dispersion
(b̄.0) is to reduce the central peak. When there is no d
persion management~i.e.,b[b̄.0), the cutoff frequency of
the central peak is

V1
2
ª1/~ b̄ l 1!. ~23!

Substituting the ansatz V̂15V1@11b1(L/ l 1)
1b2(L/ l 1)2# into the expression~19! of a1(V) and com-
puting the expansion ofa1(V̂1) with respect toL/ l 1, one
finds that the central peak stands for frequenciesV below a
new cutoff frequencyV̂1 smaller thanV1 :

FIG. 2. MI gain per unit length~in km! versus modulation fre-
quency V ~in THz! for g52 W21 km21, L15L2520 km, P0

5A255 mW, anda52/3. CurvesF, G, andH have all the same
average normal dispersion (L1b11L2b2)/(L11L2)
521 ps2 km21, but the dispersion management gets large valu
F corresponds tob1523 andb251 ps2 km21, G corresponds to
b1524 andb252 ps2 km21, andH corresponds tob1528 and
b256 ps2 km21.
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V̂1
2 5V1

2 F12
1

12

~b12b2!2

b̄2
s2~12s!2

L2

l 12
1OS L3

l 13D G .

~24!

Furthermore, we can also compute the expansion of the
gain inside this frequency band:

G~V!52b̄VAV1
2 2V2F12

1

24

~b12b2!2V2

b̄2~V1
2 2V2!

s2~12s!2

3
L2

l 12
1OS L3

l 13D G . ~25!

It then clearly appears that a strong dispersion managem
reduces the central peak. Furthermore, if the averaged
persionb̄ and the periodL is fixed, the reduction is all the
more important asub12b2u is large ands51/2, which cor-
responds to the caseL15L2. Moreover we can compare th
formula ~24! with the exact plot of the MI gain given in Fig
1. It appears that Eq.~24! is very accurate for the configura
tions A, B, and C, but not for the configuration D. Indeed t
dispersion management in case D is so large that fur
terms in the expansion~24! should be taken into account.

We can also give more information about the reson
peaks. They appear in the vicinities of some particular f
quenciesVp , p51,2,3, . . . , which can be expanded as pow
ers ofL:

Vp
25

1

L
~c1,p1c2,pL1c3,pL21••• !.

Substituting this ansatz into the expression~19! of a1 and
collecting the terms with the same power ofL one can iden-
tify the first coefficients of the expansionc1,p andc2,p . It is
found that the coefficientc1,p depend only onub̄u. It means
in particular that the resonances appear equivalently for
anomalous or a normal average dispersion. For eachp, there
are two suitable corrective termsc2,p that we denote byc2,p

1

andc2,p
2 since they correspond tol 1 andl 2, respectively. We

shall see that the peak corresponding tol 1 is much higher.

c1,p5
pp

ub̄u
,

c2,p
6 5

1

2b̄ l 6
,

so that the resonant frequencies are

Vp
625

pp

ub̄uL
1

1

2b̄ l 6
. ~26!

Let us apply the formula~26! to the configuration corre-
sponding to Fig. 1. One finds that the theoretical reson
peaks should be aroundV1

1;0.31, V1
2;0.29, V2

1

;0.42, V2
2;0.40, V3

1;0.50, and V3
2;0.49 ~in THz!.

The comparison with the exact plot of the MI gain given
Fig. 1 is therefore excellent. The same holds true for

s;
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comparison with Fig. 2, when the theoretical resonant peaks are predicted to be aroundV1
1;0.25, V1

2;0.275, V2
1

;0.375, V2
2;0.39, V3

1;0.47, andV3
2;0.48 ~in THz!.

The positions of the resonant frequencies do not depend on the strength dispersion managementb12b2, but the maxima of
the corresponding peaks do. We now focus on this point. Let us consider a frequency aroundVp

6 and expand the expressio
~19! of a6. The corresponding expansion of the MI gainG defined as Eq.~21! is

G~AVp
621V2!5A@12~21!p cosup#

~b22b1!2b̄2

2b1
2b2

2p2p2l 62
24b̄2V41OS L

l 6D , ~27!

upª
b1~12s!2b2s

b1~12s!1b2s
pp. ~28!

The MI gain peak is reached inVp
6 and is equal to@12(21)p cosup#

1/2ub22b1ub̄/(A2ub1uub2u l 6pp). But it may happen
that cosup is equal to (21)p. In such a case the term inside the square root in the right hand side of Eq.~27! is always
nonpositive, so that one has to determine the next term@in O(L/ l 6)] in the expansion ofG. If cosup5(21)p, then the MI gain
in the vicinity of the resonant frequencyVp

6 is given by

GSAVp
621V2

L

l 1D 5A1

4 S b̃21b̄21

ppl6 D 2

24S b̄V22
b̃21b̄

8ppl6D 2
L

l 6
1OS L2

l 62D , ~29!

b̃21
ª~12s!b1

211sb2
21 . ~30!
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The MI gain peak is reached inAV621L/(b̃8ppl62) and
is equal toub̄b̃2121uL/(2ppl62). Note that this peak can
be canceled only ifs50, s51, or b15b2, i.e., when the
dispersion management is zero. Furthermore when the
persion management increases, the maximum of the p
goes to its minimal valueL/(2ppl62).

Figure 3 plots the MI gain in the vicinities of the two firs
resonant peaks for some particular configurations. Let us
consider the peaks corresponding toV1

1 @Fig. 3~a!#. In the
configurationsI , K, andM, we haveu152p, u154p, and
u156p, respectively. Accordingly we apply formula~27!
which shows that the resonant peaks are rather importan
the configurationsJ and L, we haveu153p and u155p
respectively. Accordingly we apply formula~29! which
shows that the corresponding peaks are rather low. Le
now consider the peak corresponding toV2

1 @Fig. 3~b!#. In
all configurations the normalized angleu2 /p is an even
number. Application of formula~29! then yields that the cor
responding peaks are low and similar.

D. Numerical simulations of the modulational instability

In this section we perform detailed comparison of pred
tions of the above theory with a full numerical investigati
of the problem. We use the split-step algorithm to solve
vector NLS equations~1!,~2!. As an initial condition we
choose

u0~x!5A@11sm~x!#,

v0~x!5A,

wherem(x) is white noise with a flat spectrum ands!1.
The system then naturally amplifies the frequencies wh
correspond to the MI gain spectrum, and computing
is-
ak

st

In

us

-

e

h
e

spectrum of the transmitted wave we directly get the sum
a Dirac peak centered atV50 ~corresponding to the unper
turbed problemu05A, v05A) and of the spectrum of the
MI gain.

In Fig. 4 we investigate the same configuration as in F
1 ~average anomalous dispersion!. We chooses5531026

and make the wave propagate over a distance 400 km.
picture is in very good agreement with the theoretical on

In Fig. 5 we investigate the same configuration as in F
2 ~average normal dispersion!. We chooses5531026 and
make the wave propagate over a distance 800 km. In
standard normal dispersion~i.e., b[21) we can observe an
almost flat spectrum which means that there is no MI ga
Furthermore dispersion management creates resonanc
the frequencies derived in the above theoretical model, bu
the strength of dispersion management is increased, t
resonant peaks are progressively suppressed.

IV. RANDOM MODULATIONS OF DISPERSION

A. Formulation of the problem

In this section we study the influence of random modu
tions of dispersion on MI in a birefringent fiber. The dispe
sion is represented asb(x)5b01b1(x). The fluctuations of
the dispersion are assumed to obey Gaussian statistics
correlation function

^b1~x!b1~y!&5B~x2y; l c!, ~31!

wherel c is the correlation length. Whenl c→0, we have the
white noise caseB(x2y; l c)→2s2d(x2y). We adopt the
same notations as in the above sections. The system of e
tions for f 6,g6 is

f x
65b~x!V2g6, ~32!
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gx
652b~x!V2f 612gA2~16a! f 6. ~33!

The analysis of the system of equations for the first m
ments^ f 6&,^g6& shows that the dynamics is the exponent
decreasing of first moments and that the resonant phenom
are absent. This is an expected phenomenon, sincef 6 and
g6 are strongly oscillating and these oscillations make
first moments average to 0. So we shall analyze the be
iors of the second moments^ f 62&, ^g62&, and^ f 6g6& ~we
add^ f 6g6& so as to close the equations for the second m
ments!. The system of equations for the second order m
ments has the form:

^ f 62&x52b0V2^ f 6g6&12V2^b1~x! f 6g6&, ~34!

^g62&x52~ l 6212b0V2!^ f 6g6&22V2^b1~x! f 6g6&,
~35!

^ f 6g6&x5b0V2^g62&1~ l 6212b0V2!^ f 62&

1V2^b1~x!~g622 f 62!&. ~36!

FIG. 3. MI gain per unit length~in km! versus modulation fre-
quency V ~in THz! for g52 W21 km21, L15L255 km, P0

5A255 mW, anda52/3. ~a! @~b!# is focused around the first reso
nant peakV1

1 ~the second resonant peakV2
1). In ~a! the peak

corresponding toV1
2 is also noticeable. The curves have all t

same average anomalous dispersionb̄51 ps2 km21, but the dis-
persion management gets large values;I corresponds tob153 and
b2521 ps2 km21, J corresponds to b154 and b2

522 ps2 km21, K corresponds tob155 andb2523 ps2 km21,
L corresponds tob156 and b2524 ps2 km21, and M corre-
sponds tob157 andb2525 ps2 km21.
-
l
na

e
v-

-
-

wherel 1 and l 2 are defined by Eq.~15!. For decoupling of
the means ^b1f 6g6&,^b1f 62&,^b1g62& we apply the
Furutzu-Novikov formulas

^b1~x!F&5E
0

x

dy B~x2y!K dF~x!

db1~y!L . ~37!

As a result we obtain the system for the second mome
which reads as a linear system

d

dxS ^ f 62&

^g62&

^ f 6g6&
D 5M 6S ^ f 62&

^g62&

^ f 6g6&
D , ~38!

FIG. 4. Output spectrum after a propagation over 400 km of
initial wave (u0 ,v0) for g52 W21 km21, L15L2520 km, P0

5A255 mW, s51025, anda52/3. CurveA corresponds to the
standard anomalous dispersionb15b251 ps2 km21. CurvesB, C,
and D have all the same average anomalous dispersion (L1b1

1L2b2)/(L11L2)51 ps2 km21, but the dispersion manageme
gets large values; B corresponds to b154 and b2

522 ps2 km21, C corresponds tob158 andb2526 ps2 km21,
andD corresponds tob1516 andb25214 ps2 km21.

FIG. 5. Output spectrum after a propagation over 800 km of
initial wave (u0 ,v0) for g52 W21 km21, L15L2520 km, P0

5A255 mW, s51025, anda52/3. CurveE corresponds to the
standard normal dispersionb15b251 ps2 km21. CurvesE, F, and
G have all the same average normal dispersion (L1b1

1L2b2)/(L11L2)51 ps2 km21, but the dispersion manageme
gets large values;F corresponds tob1523 andb251 ps2 km21,
G corresponds tob1524 and b252 ps2 km21, and H corre-
sponds tob1528 andb256 ps2 km21.
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M 65S 22V4s2 2V4s2 2b0V2

2V4s2 22V4s2 2~ l 6212b0V2!

~ l 6212b0V2! b0V2 24V4s2
D .

~39!

Instability is actually present if an eigenvalue ofM 1 or M 2

has a positive real part, and the MI gain, which correspo
to an exponential growth of̂f 62& or ^g62&, is the largest
value of the real parts of the eigenvalues ofM 6. We have
found that the matricesM 1 andM 2 have three eigenvalue
denoted by (p1

1 ,p2
1 ,p3

1) and (p1
2 ,p2

2 ,p3
2), respectively.

These eigenvalues can be expanded as powers ofs2:

p1
652VAb0~ l 6212b0V2!

1
1

2

V2~8b0
2V428b0V2l 6211 l 622!

b0~ l 6212b0V2!
s21O~s4!,

~40!

p2
6522VAb0~ l 6212b0V2!

1
1

2

V2~8b0
2V428b0V2l 6211 l 622!

b0~ l 6212b0V2!
s21O~s4!,

~41!

p3
652

V2l 622

b0~ l 6212b0V2!
s21O~s4!. ~42!

B. Normal dispersion b0<0

In this case, the real parts ofp1
6 andp2

6 are negative, and
p3

6 is positive real valued for every frequencyV, which
proves that there is instability for all frequencies. The gain
equal top3

1 ~becausel 1, l 2 implies p3
1.p3

2):

G~V!5
V2l 122

ub0u~ l 1211ub0uV2!
s21O~s4!.

The MI peak corresponds toV→` and is given by

Gopt5
1

b0
2l 12

s21O~s4!5
4g2A4~11a!2

b0
2

s21O~s4!.

C. Anomalous dispersionb0>0

We introduce the characteristic frequenciesV6 , V1,6 ,
andV2,6 :

V6
2 :5

1

b0l 6
, ~43!
s

s

V1,6
2

ª

22A2

4
V6

2 , ~44!

V2,6
2

ª

21A2

4
V6

2 . ~45!

We can then rewritep1
6 , p2

6 , andp3
6 as follows:

p1
652b0VAV6

2 2V214
V2~V22V1,6

2 !~V22V2,6
2 !

V6
2 2V2

s2

1O~s4!, ~46!

p2
6522b0VAV6

2 2V214
V2~V22V1,6

2 !~V22V2,6
2 !

V1
2 2V2

s2

1O~s4!, ~47!

p3
65

V2V6
4

V22V6
2

s21O~s4!. ~48!

In the standard MI regionV,V1 , the gain is now given
by p1

1 :

G~V!52b0VAV1
2 2V214

V2~V22V1,1
2 !~V22V2,1

2 !

V1
2 2V2

s2

1O~s4!,

which shows that the random dispersion makes instab
increase forVP(0,V1,1) andVP(V2,1 ,V1), and decrease
for VP(V1,1 ,V2,1). In particular, the MI peak which is
obtained aroundV5V1 /A2 is reduced:

Gopt5b0V1
2 2

1

2
V1

4 s21O~s4!.

In the standard stable regionV.V1 , the gain is now
positive for every frequency and of orders2, since the domi-
nant terms inp1

6 andp2
6 are imaginary. Comparing carefull

the real parts ofp1
6 , p2

6 , andp3
6 then establishes that th

gain is imposed byp3
1 :

G~V!5
V2V1

4

V22V1
2

s21O~s4!.

D. Numerical applications

The above analysis of normal and anomalous dispers
was performed under the assumption that the fluctuati
were weak in the sense thats!ub0u. This is usually the case
in standard applications, but we can actually compute
eigenvalues of the matrixM for anys. They are the roots of
a polynomial of degree 3, so that the Cartan rule@22# gives
closed form expressions for the roots which are complica
but can be plotted easily.
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We first consider a case where the average dispersio
anomalous. As shown by Fig. 6 the central peak rema
almost unchanged even when the standard deviation of
fluctuations of the dispersion is equal to the average dis
sion b0. The standard deviation of the fluctuations has to
larger thanb0 to involve a noticeable departure of the cent
peak from its unperturbed form corresponding tos50. The
main effect of the fluctuations is in fact to make the freque
cies just above the cutoff frequencyV1 very unstable.

Let us now regard a case where the average dispersio
normal. If there is no instability in the unperturbed norm
dispersion case, we can check in Fig. 7 that the fluctuat
of the dispersion make all frequencies all the more unsta
as the fluctuations are larger.

V. CONCLUSION

In conclusion we have investigated the modulational
stabilities of electromagnetic waves in birefringent fibe
with periodic dispersion~two-step dispersion manageme
scheme!. We have found that the strong periodic modulati
of dispersion leads to the suppression of resonant sideb
and essentially reduces the spectral width of the main pea

FIG. 6. MI gain per unit length~in km! versus modulation fre-
quency V ~in THz! for g52 W21 km21, L15L2520 km, P0

5A255 mW, anda52/3. The solid curve corresponds to the sta
dard anomalous dispersionb051 ps2 km21 ands50. The dashed
curves have all the same average anomalous dispersionb0

51 ps2 km21, but the standard deviationss ~expressed in
ps2 km21) of the fluctuations of the dispersion have different v
ues.
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MI. These results can be important for the dispersion m
agement optical communication using vector optical solito

The modulational instability of nonlinear plane waves
the birefringent fibers with random dispersion has been a
lyzed. We have found that in the normal dispersion region
frequencies are modulationally unstable~in the deterministic
case we have not MI!. The gain in this region is;A4s2/b0

2.
In the anomalous dispersion case the behavior of MI is m
complicated. In the region of frequencies of modulations
,V,V1,1 andV2,1,V,V1 the gain is enhanced and i
the regionV1,1,V,V2,1 ~where the optimal frequency
lies! the gain is reduced by comparison with the determin
tic case. In the stable region for deterministic caseV
.V1) the inclusion of random dispersion leads to instab
ties for all frequencies of modulations.

As a final remark we would like to point out that it woul
be also interesting to consider the MI in fibers with rando
group velocity delay and random linear birefringence. The
problems will be investigated separately.
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FIG. 7. MI gain per unit length~in km! versus modulation fre-
quencyV ~in THz! for g52 W21 km21, P05A255 mW, and
a52/3. The curves have all the same average normal disper
b0521 ps2 km21, but the standard deviationss ~expressed in
ps2 km21) of the fluctuations of the dispersion have different va
ues.
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