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with periodic and random dispersion

F. Kh. Abdullaev
Physical-Technical Institute of the Uzbek Academy of Sciences, G. Mavlyanov Street 2-b, 700084 Tashkent, Uzbekistan

J. Garnief
Centre de Mathmatiques Appligues, Centre National de la Recherche Scientifique, UMitdée de Recherche 7641,
Ecole Polytechnique, 91128 Palaiseau Cedex, France
(Received 24 February 1999

Modulational instability(MI) of electromagnetic waves in a birefringent fiber with a periodic dispersion
(two-step dispersion management schemeeanvestigated. The properties of new sidebands are studied. The
strong variation of dispersion leads to the decreasing of the main Ml region and the suppression of additional
resonance. In the random dispersion case the Ml of all frequencies of modulation in the normal dispersion
region is predicted. In the anomalous dispersion case the decreasing of the main Ml peak is calculated and
changes in the spectral bandwidth of MI gain are found. The analytical predictions are confirmed by the
numerical simulations of the full coupled nonlinear Salinger equations with periodic coefficients.
[S1063-651%99)10907-3

PACS numbes): 42.81.Gs, 42.65:k, 42.50.Ar

I. INTRODUCTION rameters modulations and some characteristic frequencies.
The periodic modulations of dispersion is of particular inter-
The modulational instability(MI) of nonlinear plane est. As analysis shows, the periodic modulations of disper-
waves is one of the fundamental phenomena in the nonlineion leads to decreasing of Ml gdiihi4,15. This result mo-
waves physics. The history is about thirty yefts-5]. This  tivates the study of the dispersion-managed solifds17.
phenomenon finds many applications in plasma physics, hy- It is interesting to investigate the extension of this prob-
drodynamics, nonlinear optics, and other branches of phydem to the vector NLS case. Physical motivations are Ml in a
ics. In particular, in nonlinear optics this phenomena is im-Pirefringent fiber with periodic dispersion and gain. Recently
portant for the optical communications systefdegradation € interest to this problem has increased due to polarization
of performanck the generation of short pulses with high division multiplexing schemes in the dispersion-managed

repetition rateg5], and the design of all-optical logical de- solitons applications. ‘The numerical simulations of a bire-
i fringent fiber with the two-step dispersion managed scheme
vices|[6]. ; . . ) . )
shows the existence of dispersion-managed solitons in this

The modulational instability phenomenon consists in thecase[18]. MI with periodically modulated birefringence and

instability of nonllne_ar plalje waves SQ|UtI0nS against wea eriodically varying group velocity delay was analyzed re-
long scale modulations with frequencies lower than som ently by[19]

critical value. The next stage of evolution is the growth of |, his paper we shall also study the MI process in the
sidebands and the periodic exchange of energy betweetyse when the dispersion of the birefringent fiber is randomly
pump and sidebands due to the wave propagation. The scalgfodulated. In real fibers there always exist random fluctua-
and vector nonlinear Schimger(NLS) equations have been tions of parameters. The measurements of the longitudinal
studied in Refs[7-10. A lot of work has been devoted to variations show that the zero wavelengty is fluctuating

the MI process in homogeneous nonlinear media. and this leads to the degradation of the optical communica-
Recently the investigation of the MI process in periodi- tions system performand@0,21].
cally modulated media has attracted attenfibh—13. This The paper is organized as follows. In Sec. Il the model is

investigation is mainly motivated by the electromagneticdescribed. The analysis of Ml in the birefringent fiber with
waves propagation in fibers with periodically varying powertwo-step dispersion managed scheme is performed in Sec.
and dispersion along the propagation distance. The corrdH. In Sec. IV the MI in the case of randomly modulated
sponding mathematical model is the NLS equation with pedispersion is studied and the Ml gain and spectral behavior is
riodically varying dispersion and nonlinear coefficients. A calculated for the mean normal and anomalous dispersion
new phenomenon has been predicted: the generation of nevases.
sidebands and the existence of unstable sidebands even in the
normal dispersion regime. The existence of such sidebands is
connected with the parametric resonance between fiber pa-
We shall study the propagation of two polarized electro-
magnetic waves in a periodic transmission line with an arbi-
*FAX: (33 1 69 33 30 11. Electronic address: trary dispersiorn3(x). The governing system is the system of
garnier@cmapx.polytechnique.fr two coupled modified nonlinear Scliinger equation§18]

II. DESCRIPTION OF THE MODEL
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iUy + B U+ (| Ul2+ alv]2)u=0, (1) Il ANALYSIS FOR TWO-STEP DISPERSION MANAGED
SCHEME
v+ BX)vy+ y(alul?+[v]?)v=0, 2 A. Expression of the MI gain

wherex andt are conventionally normalized distance and, Let us consider now the par'ucula_r configuration whgre
time in the moving reference frame amd=1 for orthogo- 'S Stépwise constant and takes two different vajgeand;s,

nally polarized waves. In the birefringent fiber case 2/3. at regularly spaced intervals with lengthg andL,, respec-

The dispersion coefficienB(x) is a periodicallyx-varying tively. The system is consequently periodic with period

function. The system has the nonlinear plane waves solution -1+ L2- More precisely

u0=Aexmy(A2+aBz)x], 3 B(x)=pB, if xe[nL,nL+L,;), for n=0,1,...,
=B, if xe[nL+L4,(n+1)L), for n=0,1,....
vo=B exiy(B2+ aA?)x]. (4)
Equationg11)—(14) can be solved analytically over intervals
Let us consider the modulational instability of those solu-whereg is constant. Setting
tions. We perform a linear stability analysis, representing the

. . E
solutions in the form f=:=azxc,

U:(A+Ul)ei7(A2+aBz)X, (5) g_::bidy
P the functions {*,g") and (f ~,g~) satisfy closed-form and
v=(B+uv,)e VB TaAIX (6)  independent equations. Over intervals of tyjpévhere 3
=B, j=1or2, (f",g%) and (f~,g7) satisfy
Then the equations for the correctioms,v, are
f;x‘f‘ﬁjﬂz(ﬁjﬂz_ltil)fi:o,
iU+ B(X)Up+ YA (U + U ) + yaAB(v,+0v7)=0,

() “=11(8;03),
i1+ B(X)v 1+ YB3 (v +v¥)+ yaAB(u +uf)=0. wherel * andl~ are the characteristic wavelengths
tS) ) L
It is useful to perform the Fourier transform. We then get '7‘=M' (19
iug(©2) = BO)Q2u () + yAZ Uy (Q) +ui (- Q)] Applying continuity conditions of the field and of its time

derivative at the boundaries, it is then obvious to compute

9 , ; ) : )
the general solutions of these linear differential equations
with constant coefficients

+yaAB[v1(Q)+vI(-Q)]=0,

i01,(Q) = BX) Q%01 (Q)+¥BHv1(Q) + 0] (- Q)]

+

(nL+L1):Mf(L1)(g:)(”L),

u

+yaAB[u (Q)+uf (—Q)]=0. (10) (V

Note that the systeri7),(8) only contains second-order de-

rivatives with respect td, so thatu,(t)=u;(—t) andov(t) f= o -
=v,(—1t), which also imposesu;(Q)=u,(—Q) and = | [+ DLI=M; (L) g* (nL+Ly),
v1(Q)=v.(— Q). We can then separate the systé(10)
into the real and imaginary parts using=a+ib,v;=c  where the ma’cricek/lji are given by
+id. We get the system
+ ﬂJQZ . +
a,=B(x)Q%b, (11) cog ki x) = sin(ki"x)
M ()= . ‘ , (1)
b,=—B(x)Q%a+2yA(Aa+ aBc), (12 s .
- stm(kj—x) cogkj X)
= B(x)0%d, (13 j
with
dy=—B(x)Q%c+2yB(Bc+ aAa). (14
k" (Q)=B0%(B; 071771, (17)

Throughout the paper we shall consider the particular case

A=B which simplifies the algebra. Finally we shall define Note that if the expression inside the squared root is negative
the Ml gain as the coefficier® () which governs the maxi- valued, thenkii is imaginary, and the cos and sin which
mal exponential growth ofa(Q)? b(Q)?, c(Q)? and appear in Eq(16) should then be interpreted as cosh and
d(Q)2. i sinh. Denoting
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M=:=M, (L,)M7 (L) ' rTTT ' A
. . 003k /N | B |
we get the recursive relation S N | [P C
------ D
f= [ . N
L [(n+1D)L]=M*| . |(nL), g 002 Lo .
97 97 ] ’ll Y
= |
from which we deduce that 0oLl /-
R ol 2 \ -
+ f+ [ ‘\.\ /\“‘
( +)(nL):Min( +)(0) i : l‘.ll : I i
g g- ol v v A R e
0 0.1 0.2 0.3 0.4 0.5
More generally, ifxe[nL,nL+L,), then frequency (THz)

f* f*
(gr (x)=Mf(x—nL)M+”(g:>(0)

and ifxe[nL+L4,(n+1)L), then

+

FIG. 1. MI gain per unit lengthin km) versus modulation fre-
quency Q (in THz) for y=2 W tkm™%, L;=L,=20 km, P,

=A?=5 mW, anda=2/3. The curveA corresponds to the standard

anomalous dispersiop;=8,=1 pgkm~1. CurvesB, C, andD
have all

the same average anomalous dispersidn B4
+L,8)/(Li+Ly)=1 pgkm™1, but the dispersion management
gets large valuesB corresponds t@,;=4 andB,=—2 p$km~
C corresponds tg3,=8 and B,=

* ft
( +)<x>=M;(x—nL—LoMI(Ll)M*“( +)<0>.
g g
We shall observe an exponential growthagf b, c, ord (or
equivalentlyf*, g*, f=, org™) if and only if one of the
eigenvalues oM™ andM ~ has a modulus larger than 1. Let
us denote the two eigenvalues bf* (M~) by \; and
N5 (A{ and\;). Since deM*=1, we have

1

6 pgkm %, and D corre-
sponds to8;=16 andB,=—14 pgkm 1.

Note thata™ is always real valued even whég and/orky
is complex valued. This can be checked by simple algebra

using the fact thakji is either real valued or purely imagi-
nary.

Two cases are possible.
AN =1,

(18 (i) If a*2>1, then the eigenvalues; and\, are real
valued and strictly different. Since the produci\, is
so that there is stability only whed\]|=|\;]|=|\{]

equal to 1, at least one of the eigenvalues has a modulus
=|\, |=1. Otherwise, there is MI gain and the exponentiallarger than 1.
gain per unit length is given by

2 + + - -
G=Ema>(ln|)\l [,In|A5],In|x{ ], NS ).

From Eq.(18), this expression can be simplified into

G

2 _
Smax(finx [ infA ).

Let us now study more carefully the spectra of the matrices

forms:
A=a“+a"?-1,

A —a®— a1,

where

+ + 1 + -+
a“:=cogk; L,)cogkyL,)— E(r—+r—‘1)

X sin(ky Lo)sin(kyLy), (19)
. kiBe
=2 (20)
ks B1

(i) If a*2<1, then, denoting*:=\1—a*?, the eigen-
values are given by; =a*+ib~ and\, =a*—ib*. Since

their product is equal to 1, we hawa ?+b*2=1, which
means that there exists sorié such thata™=cos@") and
*=sin(@*). Consequently,\; =expi#* and \, =exp
—i6* have both modulus 1.
As a conclusion, there is stability if and only af 2—1

anda®?—1 are nonpositive valued, and otherwise the expo-
nential gain is

2
M*. One finds that the eigenvalues have the following G:Ema>(||n||a*|+\/a+2—1||,|ln||a*|+Va*2—1||).

(21
a* depends on all parameters of the problem, namely,
Bi, B2, L1, Lo, «a, andA, and also on the frequendy
through kji defined by Eq.(17). Equation(21) reads as a
closed-form expression which allows us to p®¢(1) as a

function of Q given the set of

parameters
(B1.B82.L1,L;,a,A).

B. Numerical applications

Figure 1 corresponds to the case of birefringent fibers
with an average anomalous dispersion, when 2/3. We
have considered the case wher2 W km™1 L,=L,
=20 km,Py=A%=5 mW. In such conditions the character-
istic wavelengths are" =30 km and ~ =150 km. It appears
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FIG. 2. MI gain per unit lengthiin km) versus modulation fre-
quency Q (in THz) for y=2 W 1km™!, L,=L,=20 km, P,
=A%=5 mW, anda=2/3. CurvesF, G, andH have all the same
average normal dispersion  L{B;+L,B5)/(L;+L,)
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) 1 a2 L2 L3
0% -0f 1—1—2%32“‘92@”(?3”'
(24)

Furthermore, we can also compute the expansion of the Ml
gain inside this frequency band:

1 (B2,

1_24Eq91_9%5(1‘92

G(Q)=280/0%-02

)

It then clearly appears that a strong dispersion management
reduces the central peak. Furthermore, if the averaged dis-
persionB and the period. is fixed, the reduction is all the
more important a$B;— B,| is large ands=1/2, which cor-

LZ

X—+0

| +2 (25)

=—1 pskm™*, but the dispersion management gets large valuestesponds to the case =L,. Moreover we can compare the

F corresponds t@;=—3 andB,=1 pskm 1, G corresponds to
B1=—4 andB,=2 pLkm 1, andH corresponds t@;=—8 and
B,=6 pSkm L

formula (24) with the exact plot of the MI gain given in Fig.

1. It appears that Eq24) is very accurate for the configura-
tions A, B, and C, but not for the configuration D. Indeed the
dispersion management in case D is so large that further

that the central peak gain is progressively reduced as theerms in the expansio(®4) should be taken into account.
strength of the dispersion management increases, and so areWe can also give more information about the resonant
the resonant sidebands. We shall give more detail in the nexteaks. They appear in the vicinities of some particular fre-

section.

quencies),, p=1,2,3...,which can be expanded as pow-

Figure 2 corresponds to the case of birefringent fibersers ofL:

with an average normal dispersion, whers-2/3. Although
there is no MI gain in the uniform case=—1 [9], some

new sidebands appear when the dispersion management is

21 2
Qp—L (CiptCoplFCgplt---).

not zero, but these sidebands tend to disappear for strong

dispersion management.

C. Study of the casel;, L,<I*, |~

Let us study the MI gain in the framework whén and
L, are smaller than the characteristic wavelengthand| ~,

which is usually the case in experimental configurations. W

then introduce the adimensional parametesuch thatlL;

=(1-s)L andL,=sL. In such conditions the average dis-

Substituting this ansatz into the expressid8) of a* and
collecting the terms with the same powerlobne can iden-
tify the first coefficients of the expansian , andc,,. Itis

found that the coefficient,, depend only odE|. It means
in particular that the resonances appear equivalently for an

eanomalous or a normal average dispersion. For gatiere

are two suitable corrective terneg , that we denote by;z P
andc, , since they correspond td andl ~, respectively. We
shall see that the peak corresponding tais much higher.

persion is
Bi=(1=5)B1+5B,. (22 o _PT
1p= =
|l
Here are the main results. The primary effect of disper-
si_on management in the average anomalous dispersion case ot = 1
(B>0) is to reduce the central peak. When there is no dis- Py ES

persion managemeﬁte.,ﬁzﬁ> 0), the cutoff frequency of
the central peak is

05 :=1p1"). (23

Substituting ~ the  ansatz Q,=Q_.[1+b;(L/1T)
+b,(L/1")?] into the expressiotil9) of a*(Q) and com-

puting the expansion ad*({).) with respect toL/I*, one
finds that the central peak stands for frequen€lebelow a

new cutoff frequency) . smaller than(), :

so that the resonant frequencies are

QEZ:E—W+ %
IBIL  2p1~
Let us apply the formulg26) to the configuration corre-
sponding to Fig. 1. One finds that the theoretical resonant
peaks should be aroundQ;~0.31, Q;~0.29, Q;
~0.42, O, ~0.40, O3 ~0.50, and Q3 ~0.49 (in TH2).

The comparison with the exact plot of the MI gain given in
Fig. 1 is therefore excellent. The same holds true for the

(26)
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comparison with Fig. 2, when the theoretical resonant peaks are predicted to be #&¢un@.25, Q; ~0.275, Q,
~0.375, Q, ~0.39, Q; ~0.47, andQ; ~0.48(in THz).

The positions of the resonant frequencies do not depend on the strength dispersion manggerggnbut the maxima of
the corresponding peaks do. We now focus on this point. Let us consider a frequency@@mnﬂ expand the expression
(19 of a*. The corresponding expansion of the Ml g&@ndefined as Eq(21) is

G(m)=\/[1—(—1)r’cosa ]M—4ﬁ2m+o —, 27
p p ZBiBSWZPZIiZ *
B1(1—5)—B,s 28)

PR (1—8) + BsT T

The MI gain peak is reached 1, and is equal td1—(—1)° cos8,"4 B,— B1| B/ (2| B1l| B2/1 * 7p). But it may happen
that co®, is equal to (- 1)P. In such a case the term inside the square root in the right hand side ¢2HBds always
nonpositive, so that one has to determine the next fexr®(L/l 7)] in the expansion 06. If cosf,=(—1)°, then the Ml gain
in the vicinity of the resonant frequen@Ff is given by

. L 1(B -1\’ (— E‘lﬁ)zL (LZ)
072 QZ_ :\/_ _ QZ_ _ —, 2
\/ P |+) 4( apl* ) 4P 8mpl* |t+o | +2 @9

B l=(1-s)B1 +sB, . (30)

G

The MI gain peak is reached Q2+ L/(B8mpl*2) and  SPectrum of the transmitted wave we directly get the sum of
is equal to|E'B*1—1|L/(2wpli2). Note that this peak can a Dirac peak centered &= 0 (corresponding to the unper-
be canceled only i6=0, s=1, or B,=8,, i.e., when the turbed problemuy=A, vo=A) and of the spectrum of the

dispersion management is zero. Furthermore when the diyII gam.

persion management increases,+ the maximum of the pealk (:vgrlgé;: gﬁ;&ﬁg’ﬂgiﬁ”ﬁ;g&: gﬁgggsl;a:tlgial%_lré Fig.
goes to its minimal valu&/(27pl*?). P

Figure 3 plots the MI gain in the vicinities of the two first and make the wave propagate over a distance 400 km. The

resonant peaks for some particular configurations. Let us firﬁICture is in very good agreement with the theoretical one.

. . . In Fig. 5 we investigate the same configuration as in Fig.
consider the peaks corresponding®g [Fig. 3@]. In the : . e P
configurations, K, andM, we have,=2m, 6,= 4, and 2 (average normal dispersipriWe chooser=5X10"° and

6,= 6, respectively. Accordingly we apply formul7) make the wave propagate over a distance 800 km. In the

which shows that the resonant peaks are rather important. lsr,{andard normal dlspers!oine., B=—1) we can 'observe an
' . = v almost flat spectrum which means that there is no Ml gain.
the configurations) and L, we have#,=3# and 6,=5mw

respectively. Accordingly we apply formul&29) which Furthermore dispersion management creates resonances at
P Y. gy v PPRYY the frequencies derived in the above theoretical model, but as
shows that the corresponding peaks are rather low. Let

u, . . . .
now consider the peak correspondingQd [Fig. b)), In the strength of dispersion management is increased, these

. . . . resonant peaks are progressively suppressed.
all configurations the normalized angls/m is an even P prog y stpp
number. Application of formul#29) then yields that the cor-
responding peaks are low and similar. IV. RANDOM MODULATIONS OF DISPERSION

A. Formulation of the problem

D. Numerical simulations of the modulational instability In this section we study the influence of random modula-
In this section we perform detailed comparison of predic-tions of dispersion on Ml in a birefringent fiber. The disper-
tions of the above theory with a full numerical investigation sion is represented g&(x) = 8o+ 81(X). The fluctuations of
of the problem. We use the split-step algorithm to solve théhe dispersion are assumed to obey Gaussian statistics with
vector NLS equationg1),(2). As an initial condition we correlation function

choose
(B1(x)B1(Y))=B(x=y;lo), (31
Ug(X)=A[1+om(x)],
wherel. is the correlation length. Wheln— 0, we have the
vo(X)=A, white noise cas@(x—y;l.)—2028(x—Yy). We adopt the

same notations as in the above sections. The system of equa-
wherem(x) is white noise with a flat spectrum ang<1. tions forf=,g= is
The system then naturally amplifies the frequencies which . -
correspond to the MI gain spectrum, and computing the fx=B(x)Qg", (32
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FIG. 3. MI gain per unit lengtlin km) versus modulation fre-
quency Q (in THz) for y=2 W tkm™%, L;=L,=5 km, P,
=A?=5 mW, anda=2/3. (a) [(b)] is focused around the first reso-
nant peakQ; (the second resonant pedk;). In (a) the peak
corresponding td}; is also noticeable. The curves have all the
same average anomalous dispersgpnl ps km™ !, but the dis-
persion management gets large valuesprresponds tg@, =3 and
B,=—1 pgkm™t J corresponds to B;=4 and g,
=-2 pgkm %, K corresponds t@,;=5 andB,=—3 pSkm %,

L corresponds tg3;,=6 and 8,=—4 pSkm!, and M corre-
sponds toB;=7 andB,=—5 pSkm L.

O =~ BT +2yAX 1 a)f5. (3

The analysis of the system of equations for the first mo-
ments(f*),(g*) shows that the dynamics is the exponential
decreasing of first moments and that the resonant phenomen

are absent. This is an expected phenomenon, dincand

g™ are strongly oscillating and these oscillations make the
first moments average to 0. So we shall analyze the behav-

iors of the second momen$=2), (g*=?), and(f*g~) (we

add(f*g™) so as to close the equations for the second mo-
ments. The system of equations for the second order mo-

ments has the form:
(F52),=2B00X(f*g™) +20%(B1 () f*g"),

(97°2)=2(17 1= Bo?)(Fg™) — 20X B1(x) f*g™),
(35

(39

(F297 )= Bo QX g™ )+ (1" 1= BoQ)(f*2)

+02(B1(X)(gT2—72)). (36)
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FIG. 4. Output spectrum after a propagation over 400 km of the
initial wave (Ug,vo) for y=2 W lkm %, L;=L,=20 km, P,
=A?=5 mW, =105, and a=2/3. CurveA corresponds to the
standard anomalous dispersiBp=8,=1 ps km™ . CurvesB, C,
and D have all the same average anomalous dispersionB(
+L,8)/(Li+Ly)=1 pgkm™1, but the dispersion management
gets large values; B corresponds to B;=4 and g,

—2 pgkm™, C corresponds t@;=8 andB,=—6 pskm?,
andD corresponds tg@8; =16 andB,=—14 pgkm .

wherel * andl~ are defined by Eq(15). For decoupling of

the means (B:f*g™).(B:f2).(B197?) we apply the
Furutzu-Novikov formulas

SF(X) >
oB1(y) ]

As a result we obtain the system for the second moments
which reads as a linear system

(B2(X)F) = f:dy B(x—y>< (37

(F72) (F+2)
—| (@ |=m=| (g% |, (38)
(f=g%) (f=g%)
L B B N
_ — E
g 25 | I F |3
s i e G
-E' 10'6;- _____ H |4
&
£
.
€ 10°]
= i
&
N B
107 - :
E_. | PR TR TR TR S [N TR T S T | 3
0 0.1 0.2 0.3 04 0.5
frequency (THz)

FIG. 5. Output spectrum after a propagation over 800 km of the
initial wave (Ug,vq) for y=2 W tkm™1, L;=L,=20 km, P,
=A2=5 mW, o=10"5, and = 2/3. CurveE corresponds to the
standard normal dispersigy = 8,=1 p< km™1. CurvesE, F, and
G have all the same average normal dispersiob;Bg
+L,B8.)/(L;+Ly)=1 p€km™?, but the dispersion management
gets large valuesF corresponds t@;=—3 andB,=1 pskm I,
G corresponds to8;=—4 and 8,=2 p£km !, and H corre-

sponds to8;=—8 andB,=6 psSkm 1.
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M*= 20%0? —20%% 2(17 1= BoQ?)
(1771 Bo2?)  Bo0? —40%?

(39

Instability is actually present if an eigenvalueMf" or M~
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Qi+._2 \/_Qi, (44)
0= 2+[ 2 (45)

has a positive real part, and the Ml gain, which correspond¥Ve can then rewritp; , p; , andp; as follows:

to an exponential growth off “2) or (g*2), is the largest
value of the real parts of the eigenvalueshéf-. We have
found that the matrice®! ™ andM ~ have three eigenvalues
denoted by p;,p;.ps) and (1 .p;.P3), respectively.

These eigenvalues can be expanded as powesg:of

p; =20Bo(17 1= B0
1 Q%(8B3Q4—8B,02="1+1772)
+

— 2 o) 4
2 Bo(1* ™= Bo2?) 7oL,

(40

P2 = —2QVBo(1" 1= Q%)
1 04(8B50*—8B,0A 1 +1772)
2 Boll* "= Bo00?)

a?+0(o?),

(41)

QZI *-2

Bo(1= 1= B0

Pz =— a?+0(o?). (42

B. Normal dispersion B8,<0

In this case, the real parts pf andp, are negative, and
p; is positive real valued for every frequendy, which

0%(0%-05.)(0%-03.)

2
0Z-Q2 7

s =20 02— 0%+ 4

+0(ao?), (46)

0%(0%-05.)(0%-03.)

P5>=—2B,0V05—0%+4 0r _o? o?
+
+0(o%), (47)
0204
p§=—QZ_Q*2 o?+0(o%). (48)

In the standard Ml regiofl <(} , , the gain is now given
by p; :

G(Q)=2B,00% —0%+4

+0(0?),

0%(02-0%,)(0%-03,)
0%2-02

0_2

which shows that the random dispersion makes instability
increase foK) € (0,0, ;) andQ € (2, ,Q ), and decrease
for Qe (Q,,,Q,.). In particular, the MI peak which is
obtained around)=Q . /12 is reduced:

1
GP= o7 — 5 0% 0%+ 0(0).

proves that there is instability for all frequencies. The gain is

equal top; (becausd ™ <I~ implies p; >p3):

QZ|+—2

24 0(0%).
Bl i 1ggn O

G(Q)=

The MI peak corresponds tQ— and is given by

472A4(1+ a)?
2
0

1
GOoPl= a?+0(o*) =

2+ 0(0%).
Bg|+2

C. Anomalous dispersionBy>0

We introduce the characteristic frequencies , Q, .,
andQ, . :

0?%:= , (43

In the standard stable regidd>(}, , the gain is now
positive for every frequency and of ordef, since the domi-
nant terms irp; andp, are imaginary. Comparing carefully
the real parts op;, p,, andp; then establishes that the
gain is imposed by, :

204
+

G(Q)= a?+0(o?).

+

D. Numerical applications

The above analysis of normal and anomalous dispersion
was performed under the assumption that the fluctuations
were weak in the sense thatz|B,|. This is usually the case
in standard applications, but we can actually compute the
eigenvalues of the matril for any o. They are the roots of
a polynomial of degree 3, so that the Cartan @8] gives
closed form expressions for the roots which are complicated,
but can be plotted easily.
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FIG. 7. MI gain per unit lengtlin km) versus modulation fre-

FIG. 6. MI gain per unit lengtlin km) versus modulation fre-
quencyQ (in THz) for y=2 W lkm ! P,=A2=5 mw, and

quency Q (in THz) for y=2 W lkm™%, L;=L,=20 km, P,

=A?=5 mW, anda=2/3. The solid curve corresponds to the stan- o= 2/3. The curves have all the same average normal dispersion
dard anomalous dispersigiy=1 ps'km *ando=0. The dashed g,=—1 p£km™?, but the standard deviations (expressed in
curves have all the same average anomalous disperSion pgkm™?) of the fluctuations of the dispersion have different val-
ues.

=1 pgkm™!, but the standard deviations (expressed in

ps? km™1) of the fluctuations of the dispersion have different val-
MI. These results can be important for the dispersion man-

ement optical communication using vector optical solitons.

ues.
We first consider a case where the average dispersion f&J : : - ) .
g P The modulational instability of nonlinear plane waves in
e birefringent fibers with random dispersion has been ana-

anomalous. As shown by Fig. 6 the central peak remain
almost unchanged even when the standard deviation of t : ; : .
d e yzed. We have found that in the normal dispersion region all
requencies are modulationally unstakite the deterministic

A*a?1 B3,

fluctuations of the dispersion is equal to the average disp
sion By. The standard deviation of the fluctuations has to bé h tMITh i in thi o
larger thangB, to involve a noticeable departure of the central case we have no M € gain In this region 15~ X
peak from its unperturbed form correspondingste 0. The In the anomalous dispersion case the behavior of Ml is more
main effect of the fluctuations is in fact to make the frequen-compl'cated' In the region of freque_nc!es of modulaﬂong 0
<0<, andQ,  <Q <, the gain is enhanced and in
0<Q,. (where the optimal frequency

cies just above the cutoff frequen€y, very unstable. i

Let us now regard a case where the average dispersion {8€ region€l, . < , : CY

normal. If there is no instability in the unperturbed normal“,es) the gain is reduced by comparison W'th, the.determlnls-

dispersion case, we can check in Fig. 7 that the fluctuationiC case. In the stable region for deterministic case (

of the dispersion make all frequencies all the more unstable” +) the inclusion of random dispersion leads to instabili-
as the fluctuations are larger. ties for qll frequencies of modu_lat|ons. _ _

As a final remark we would like to point out that it would

be also interesting to consider the Ml in fibers with random

group velocity delay and random linear birefringence. These

V. CONCLUSION
In conclusion we have investigated the modulational in-problems will be investigated separately.
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